Jarrett Walker, PhD
JarrettWalker.com
HumanTransit.org
Twitter: @humantransit

Executive Workshop: TriMet Board of Directors

About Jarrett Walker

- Author Human Transit and Humantransit.org.
- 25 years experience in transit network design and policy.
- Projects in >50 metro areas in 9 countries.
- Many successful implementations.
- PhD Humanities.

Jarrett Walker

Why fixed transit?

Ultimately, it's about Space

Fixed transit is existential for cities

- In dense cities, are those wanting to be dense, transit is existential. *The city is impossible without it.*
- So be careful when anyone tells you that new ideas or technologies are "disrupting" fixed route transit.

No technology will change geometry.

- Energy and Emissions are technology problems.
- But space is a geometry problem.
- Technology <u>never</u> changes geometry.

Bus

Private Car

Uber/Lyft Car

Flexible routing = Inefficiency

Sample service	Passenger trips/vehicle hour
Subways in majorcities	>200
MAX Blue	139
14-Hawthorne	40 Supremely effective
Infrequent outer suburban/rural circulator	demand-response can't
	get near half the
General Public Dial-a-Ride	0-3 productivity of a very ineffective fixed route!
Paratransit (senior-disabled)	0-2
Uber/Lyft/Taxi	1-3

Flexible routing = Inefficiency

Sample service	Passeng	er trips/vehicle hour
Subways in majorcities	>200	
MAX Blue	139	How can demand-response
14-Hawthorne	40	service bridge this big gap?
Infrequent outer suburban/rural circulator	10	1. Pay driver (much) less.
	}	2. Higher fares.
General Public Dial-a-Ride	0-3	
Paratransit (senior-disabled)	0-2	
Uber/Lyft/Taxi	1-3	So replacing fixed route with demand response means:
		→ Deepening class divides.
		→ Higher congestion, emissions, need for road space.

Roles for demand response

- Service for higher-paying travelers.
 - Logical private sector role.
- Maybe transit roles for semi-fixed services doing suburban feeders, but case for subsidy is weak.
 - Still not nearly as productive as a fixed route.

BUT

- Policy needs to capture impacts of these services.
- Probably no reason for TriMet to get into such an inefficient business.

Driverless Cars → Driverless Buses

- Driverless rapid transit already exists.
- Driverless buses are happening (China, Mercedes)
- Labor cost is the biggest limit on transit quantity.
- The driverless bus could make bus service much more abundant.

Source: PoYang, under CC Access

Source: Daimler AG

Will it be different when we have driverless cars?

• The geometry hasn't changed. The efficient use of urban space will still require an attractive, fixed route, big-vehicle system.

Cars with Drivers

Driverless Cars (partial uptake)

High-Ridership Bus (Driverless?)

Driverless Cars -> Driverless Buses

- Driverless rapid transit already exists.
- Driverless buses are happening (China, Mercedes)
- Labor cost is the biggest limit on transit quantity.
- The driverless bus could make bus service much more abundant.

Source: PoYang, under CC Mens

Source: Daimler AG

What is High-Ridership Transit?

To expand ridership, expand freedom (access).

The Wall Around Your Life

Isochrones as maps of your freedom.

How far can Jane travel in 15 30 45 or 60 minutes?

Where can I be, now?

Freedom is a geometric fact.

What Maximizes Access?

- High <u>Frequency</u> Lines
- Forming a <u>Connected</u> <u>Network</u>
- Reasonably <u>fast and reliable</u>
- Focused on <u>Transit Friendly</u> <u>Places</u>
 - Dense
 - Walkable
 - Linear
 - Proximate

A "map" of the territory we'll explore.

Abundant Access Handout

"Frequency is freedom!"

Frequency

Frequency comes first

High frequency means public transport is coming soon.
 This has three independent benefits:

- Reduced Waiting
- Easier Connections
- Reduced Impact of Disruptions

 Lines with higher frequency tend to have not just higher patronage, but higher patronage per unit of service.

HIGH FREQUENCY → HIGH PRODUCTIVITY

Portland Boise

Houston Indianapolis Salem

Yums Spokane Columbus A'buqueque

San Bernardino Co.
Ann Arbor
Grand Hapida

Frequent Network Brands

Frequent Network Brands

"Over half of all population and jobs will be on the Frequent Network."

-- Regional Goal 3

Frequent Network Brands

- "Turn up and go."
- A network for people in a hurry.
- Frequency is Freedom

Vancouver BC

Brisbane

Minneapolis

Bellingham

Los Angeles

Every 15 Minutes (or Less)

Seattle

Spokane

Frequency -> Affordability

- Useful enough to be liberating, and
- Abundant enough that it can't drive up housing prices everywhere.
- Helps build apartments with less parking → affordability

Bus perceptions vs freq. network

Perceptions about "bus"	Frequent Networks
Confusing	Simple because of frequency.
"Easy to change"	Tends toward permanence.
Noisy, smelly, unpleasant.	Buses can be electric and can be as nice as we want them to be.
Irrelevant to Land use	Affects location choices and can drive land use modestly, <u>and</u> supports affordability.
"for disadvantaged people"	Discretionary ridership happens on useful service.
Unrelated to rail	Builds markets to the point where rail makes sense.

Frequent Network as Co-ordinator

Signals to Private Sector (e.g. Real Estate)

To grow freedom, make connections easy.

Connections

In a direct network, nobody needs to connect, but waits are long.

In a connected network, many passengers need to connect, but waits are short.

The Genius of the Frequent Grid

Put liberating service where it will liberate the most people.

Where can transit succeed?

Density

How many people are near transit?

The more people are going to and from the area around each stop, the more people will ride transit.

High Ridership

Lower Ridership

Walkability

Can the people around the stop walk to the stop?

High Ridership

Lower Ridership

Linearity

Can transit run in straight lines that are useful to through-riders?

The straighter the line, the shorter the journey, and the more people can find it useful.

The Ridership-Coverage Tradeoff

But is Ridership What You Want?

Both goals are important, ... but they lead opposite directions!

Ridership Goal

- "Think like a business."
- Focus where ridership potential is highest.
- Support dense and walkable development.
- Max. competition with cars
- Maximum VMT reduction

Coverage Goal

- "Think like a public service."
- "Access for all"
- Support low-density development.
- Lifeline access for everyone.
- Service to <u>every</u> member city or electoral district.

So it helps to choose a point on the spectrum ...

Ridership Goal

Coverage Goal

Linear Presentation ends here. Remaining slides are used as needed, but conversation explores the abundant access diagram.

Case Study of a Ridership-Coverage Conversation: VTA

Current All-day Frequency

So it helps to choose a point on the spectrum ...

Ridership Goal

Coverage Goal

How much should VTA focus on ridership? 70%? 80% 90%?

Please Learn 4 Colors

These will be used consistently throughout the project.

Current All-day Frequency

Concept 70 (70% Ridership, 30% Coverage)

Concept 80 (80% Ridership, 20% Coverage)

Concept 90 (90% Ridership, 10% Coverage)

Access to jobs ...

As you move toward a higher ridership network ...

- People and jobs near <u>frequent</u> transit go up ...
- People and jobs near <u>any</u> transit go down.

Jobs Accessible by Transit Services

2016 Network vs. Conceptual Networks 70, 80, 90 (within 1/2 mile of a VTA, Caltrain, or ACE stop in Santa Clara County)

Access by residents ...

As you move toward a higher ridership network ...

- People and jobs near <u>frequent</u> transit go up ...
- People and jobs near <u>any</u> transit go down.

Residents with Access to Transit Services

2016 Network vs. Conceptual Networks 70, 80, 90 (within 1/2 mile of a VTA, Caltrain, or ACE stop in Santa Clara County)

How far can Jane travel in 15 30 45 or 60 minutes?

Downtown San Jose 12 noon

Existing Network

How far can Jane travel in 15 30 45

Downtown San Jose 12 noon

Concept 70

(70% ridership)

or 60 minutes?

How far can Jane travel in 15 30 45 or 60 minutes?

Downtown San Jose 12 noon

Concept 80

(80% ridership)

How far can Jane travel in 15 30 45 or 60 minutes?

Downtown San Jose 12 noon

Concept 90

(90% ridership)

So How Many People Is That?

Residents Accessible by Transit Starting from San Carlos St - S 1st St and traveling for					
2016 Network	115,200	414,400	816,100		
Increase from 2016	Network				
Network 70	4%	2%	3%		
Network 80	14%	9%	7%		
Network 90	13%	12%	8%		

Jobs Accessible by Transit					
Starting from San Carlos St - S 1st St and traveling for					
	30 min	45 min	60 min		
2016 Network	118,400	296,300	444,700		
Increase from 2016	Network				
Network 70	4%	5%	5%		
Network 80	8%	11%	7%		
Network 90	8%	11%	8%		

How far can Jane travel in 15 30 45 or 60 minutes?

Mission College 12 noon

Existing Network

How far can Jane travel in 15 30 45 or 60 minutes?

Mission College 12 noon

Concept 70

(70% ridership)

How far can Jane travel in 15 30 45 or 60 minutes?

Mission College 12 noon

Concept 80

(80% ridership)

How far can Jane travel in 15 30 45 or 60 minutes?

Mission College 12 noon

Concept 90

(90% ridership)

So How Many People Is That?

Residents Accessible by Transit					
Starting from Mission College and traveling for					
	ao min	45 min	60 min		
2016 Network	13,400	94,300	295,200		
Increase from 2016 I	Vetwork				
Network 70	46%	29%	22%		
Network 80	180%	9696	5196		
Network 90	263%	118%	6696		

Jobs Accessible by Transit Starting from Mission College and traveling for					
2016 Network	48,300	144,000	333,200		
Increase from 2016 I	Vetwork				
Network 70	29%	41%	22%		
Network 80	72%	59%	31%		
Network 90	100%	76%	43%		

Peak Express?

The challenge of peak express

Peak express service imposes three kinds of cost that all day local service does not:

- Inefficiency of short shifts.
- Deadheading against the peak direction.
- Owning, storing, and maintaining fleet that is used only briefly.

Conventional reporting doesn't highlight these factors, but they are a real reason to resist peak express growth.

Concluding Observations

The Challenge: Plan for Everyone

- High-ridership services attract <u>diverse</u> ridership.
- So all impulses to <u>specialize</u> around certain riders (except paratransit) lead to less efficient design.
- The best network is not what any interest group would design.
- "Market segmentation" can lead us astray if it weighs demographics too heavily.
- Be careful of elite projection.
 - Elite projection = Using your own tastes as a guide to what would make a good service.

Jarrett Walker

Blog: HumanTransit.org

Twitter: @humantransit

Thank you!

